Search results for "Alternating group"
showing 10 items of 18 documents
ON AUTOMORPHISMS OF GENERALIZED ALGEBRAIC-GEOMETRY CODES.
2007
Abstract We consider a class of generalized algebraic-geometry codes based on places of the same degree of a fixed algebraic function field over a finite field F / F q . We study automorphisms of such codes which are associated with automorphisms of F / F q .
Symmetric units and group identities
1998
In this paper we study rings R with an involution whose symmetric units satisfy a group identity. An important example is given by FG, the group algebra of a group G over a field F; in fact FG has a natural involution induced by setting g?g −1 for all group elements g∈G. In case of group algebras if F is infinite, charF≠ 2 and G is a torsion group we give a characterization by proving the following: the symmetric units satisfy a group identity if and only if either the group of units satisfies a group identity (and a characterization is known in this case) or char F=p >0 and 1) FG satisfies a polynomial identity, 2) the p-elements of G form a (normal) subgroup P of G and G/P is a Hamiltonia…
Characterization of strong chain geometries by their automorphism group
1992
A wide class of chain geometries is characterized by their automorphism group using properties of a distinguished involution.
Injective Fitting sets in automorphism groups
1993
Central Units, Class Sums and Characters of the Symmetric Group
2010
In the search for central units of a group algebra, we look at the class sums of the group algebra of the symmetric group S n in characteristic zero, and we show that they are units in very special instances.
Central idempotents and units in rational group algebras of alternating groups
1998
Let ℚAn be the group algebra of the alternating group over the rationals. By exploiting the theory of Young tableaux, we give an explicit description of the minimal central idempotents of ℚAn. As an application we construct finitely many generators for a subgroup of finite index in the centre of the group of units of ℚAn.
Automorphisms of the integral group ring of the hyperoctahedral group
1990
The purpose of this paper is to verify a conjecture of Zassenhaus [3] for hyperoctahedral groups by proving that every normalized automorphism () of ZG can be written in the form () = Tu 0 I where I is an automorphism of ZG obtained by extending an automorphism of G linearly to ZG and u is a unit of (JJG. A similar result was proved for symmetric groups by Peterson in [2]; the reader should consult [3] or the survey [4] for other results of this kind. 1989
Symmetric (79, 27, 9)-designs Admitting a Faithful Action of a Frobenius Group of Order 39
1997
AbstractIn this paper we present the classification of symmetric designs with parameters (79, 27, 9) on which a non-abelian group of order 39 acts faithfully. In particular, we show that such a group acts semi-standardly with 7 orbits. Using the method of tactical decompositions, we are able to construct exactly 1320 non-isomorphic designs. The orders of the full automorphism groups of these designs all divide 8 · 3 · 13.
Group identities on symmetric units
2009
Abstract Let F be an infinite field of characteristic different from 2, G a group and ∗ an involution of G extended by linearity to an involution of the group algebra FG. Here we completely characterize the torsion groups G for which the ∗-symmetric units of FG satisfy a group identity. When ∗ is the classical involution induced from g → g − 1 , g ∈ G , this result was obtained in [A. Giambruno, S.K. Sehgal, A. Valenti, Symmetric units and group identities, Manuscripta Math. 96 (1998) 443–461].
Mixed Parallelism for Single Alternating Group Explicit Method
1991
The paper deals with parallel implementation policies for D.J. Evans S_AGE (Single Alternating Group Explicit) unconditionally stable methods concerning the solution of parabolic problems in two space dimensions.